Menoufiya University Faculty of Engineering Shebin El- Kom Second Semester(June) Examination Academic Year: 2013-2014 Date: 12/6/2014

Dept.: Production Engineering Year : Doctor of Philosophy in Engineering Subject: Mechatronics Code : PRE 703 Time Allowed: 3 hours Total Marks : 100 Marks

Allowed Tables and Charts: None Examiner: Dr/ Mohamed Hesham Belal.

Answer All The Following Questions:

Question No.(1):

- (a)-[8]- Explain the term: Mechatronics and List the most application of Mechatronics and its products.
- (b)- [7]- Describe the following : Robot and Robotic Direct and inverse kinematics of manipulators.
- (c)- [10]-Define the mathematical model and transfer function, Then for the mechanical System shown in Fig.(1), Obtain the transfer functions: $X_1(s)/U(s)$ and $X_2(s)/U(s)$.

Question No.(2):

[25 Mark]

[25 Mark]

- (a)- [6]-Describe the major parts of robots, and classify the main groups of robot systems?
- (b)- [6]- List the common actuators found in a Mechatronics system showing for each actuators: type, actuation and work type.
- (c)- [13]- For the 3-DOF (RPP) manipulator arm shown in Fig.(2):
 - 1- Assign frames and tabulate the joint-link parameter,
 - 2- Determine the transformation matrices relating successive links,
 - 3- Obtain the orientation and position of the end-effector relative to the base,
 - 4- Check the correctness of the results and describe it at the home position.

Question No.(3):

[25 Mark]

- (a)- [7]- Describe a diagram for Mechatronic system as a closed loop control system and mention the function for each component.
- (b)- [8]- Show with the aid of a net sketch an example of a simple mechatronic system involving mechanical elements used to maintain a constant rotation of shaft, then explain how the control system is operated?

(c)- [10]- Use the block diagram reduction technique to obtain the overall transfer Function C(s)/R(s) of the control system shown in the Fig.(3).

Question No.(4):

[25 Mark]

(a)- [8]- In industrial applications, compare between pneumatic systems and hydraulic systems, showing the conditions for using him in robots.

(b)- [7]- Draw the circuits for (P, I and D) electronic amplifiers and derive the transfer function for each?

(c)- [10]- For the position control system shown in Fig.(4), two potentiometers of constant K_0 are used for finding out the error signal between the input angular position r and the output angular position c. An electronic differential amplifier of constant K_1 is used for the error signal amplification. The amplified signal is fed to a dc electric motor of resistance R_a , inductance L_a and back emf constant K_3 . The torque developed by the motor is proportional to the armature current, where K_2 is a proportionality constant. The torque has been transmitted to a mechanical vibrational set of inertia of the load and gear train referred to the motor shaft (J₀) and viscous friction coefficient of the load and gear train referred to the motor shaft (b₀). The gear ratio of the gear train is such that the output shaft rotates *n* times for each revolution of the motor shaft.

1- Describe the system by a set of differential equations,

2- Draw the block diagram representing the given system.

With my best wishes

This exam measure the following ILOs												
Ouestion No.	Q1-a	Q2-a	Q3-a	Q4-a	Q1-b	Q2-b	Q3-b	Q4-b	Q1-c	Q2-c	Q3-c	Q4-c
	a-1	a-3	a-4	a-3	b-2	b-6	b-2	b-6	c-1	c-4	c-1	c-4
Skills	Knowledge & Understand				Intellectual				Professional			

<u>Page (2/2)</u>